Tuesday, July 21, 2020

Chemical thermometers – a breakthrough that cater the need in microelectronics industry

With the massive miniaturisation of electronic components, density of the electronic components has been enhanced significantly along with the flowing of heat which results in overheating of the components. But conventional methods are unable to estimate the temperature in the electronic components due to limitation imposed by size of it.

Researchers have recently devised a solution of the above issue by fabricating a molecular film and using it in an electronic component of a nanometric scale. The film is made by spin crossover molecules, a temperature sensitive molecule, which is extremely stable even after several uses. Due to the bi-stability property of these molecules, these molecules exist into two electronic states with difference physical property and interchange the states by absorbing and loosing energy.

Once deposited in the form of a film on an electronic component, the optical properties of SCO molecules change depending on the temperature, enabling this chemical thermometer to establish a nanometric-scale thermal map of the surface of microelectronic circuits. The devise will soon be sued at industrial scale with improved design.


Monday, July 20, 2020

New material for lithium-ion storage - Graphdiyne

Researchers has devised new two-dimensional carbon based materials – called Graphydiyne.  

Carbon is the anode material in lithium-ion batteries. Its layered structure allows lithium ions to travel in and out of the spaces between layers during battery cycling. Carbon has a highly conductive two-dimensional hexagonal crystal lattice, and they form a stable, porous network for efficient electrolyte penetration. However, the fine-tuning of the structural and electrochemical properties is difficult as these carbon materials are mostly prepared from polymeric carbon matter in a top-down synthesis.

Graphdiyne being a hybrid two-dimensional network made of hexagonal carbon rings bridged by two acetylene units, has been used as a nanoweb membrane for the separation of isotopes. However, its distinct electronic properties and web-like structure also make graphdiyne suitable for electrochemical applications. Changshui Huang from the Chinese Academy of Sciences, Beijing, and colleagues have investigated the lithium-storage capabilities and electrochemical properties of tailor-made, electronically adjusted graphdiyne derivatives.

The scientists synthesized the graphdiyne derivatives in a bottom-up approach by adding precursors on a copper foil, which self-organized to form ordered layered nanostructures with distinct electrochemical and morphological properties.

Among these functional groups, those exerting electron-withdrawing effects reduced the band gap of graphdiyne and increased its conductivity, the authors reported. The cyano group was especially effective and, when used as an anodic material, the cyano-modified graphdiyne demonstrated excellent lithium-storage capacity and was stable for thousands of cycles, as the authors reported.

The authors conclude that modified graphdiyne can be prepared by a bottom-up strategy, which is also best suited to build functional two-dimensional carbon material architectures for batteries, capacitors, and other electrocatalytic devices.