Sunday, May 10, 2020

Storage solution using silicon in battery with the aid of nanotechnology


Silicon along with carbon nanotubes has been used to develop a nanostructure to make an effective design for battery anodes. CNT is used to strengthen the material and modify the way the silicon interacts with lithium, which has been extensively used in electrical cars and other devices.


Scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory have used a novel way to use silicon. Silicon, used in computer chips is attractive as it can hold 10 times the electrical charge per gram compared to graphite. The trouble is, silicon expands greatly when it encounters lithium, and it is too weak to withstand the pressure of electrode manufacturing.


To tackle these issues, a unique nanostructure that prevents silicon's expansion when it is mixed with carbon. Scientist work, which was recently published in the journal Nature Communications, could inform new electrode material designs for other types of batteries and eventually help increase the energy capacity of the lithium-ion batteries in electric cars, electronic devices, and other equipment.


How they do it!!


A conductive and stable form of carbon, graphite is well suited to packing lithium ions into a battery's anode as it charges. Silicon can take on more lithium than graphite, but it tends to expand about 300 percent in volume, causing the anode to break apart. The researchers created a porous form of silicon by aggregating small silicon particles into microspheres about 8 micrometers in diameter.


The electrode with porous silicon structure exhibits a change in thickness of less than 20 percent while accommodating twice the charge of a typical graphite anode. However, unlike previous versions of porous silicon, the microspheres also exhibited extraordinary mechanical strength, thanks to carbon nanotubes that make the spheres resemble balls of yarn.


The researchers created the structure sequentially, starting by coating the carbon nanotubes with silicon oxide. Next, the nanotubes were put into an emulsion of oil and water. Then they were heated to boiling. The coated carbon nanotubes condense into spheres when the water evaporates. Then aluminum and higher heat is used to convert the silicon oxide into silicon, followed by immersion in water and acid to remove by-products. What emerges from the process is a powder composed of the tiny silicon particles on the surface of carbon nanotubes.